tsae-1010 tsae-2010 tsae-2010 egae-2010 egae-2010 egae-2010 // 202-2010 // 202-2010 // 202-2010 egae-2010 egae-2010 // 202-2010 egae-2010 // 202-2010 egae-2010 // 202-2010 // 1916-1010 caps 2010 rese 010 0000-2010 6900-THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

0800-1010 0800-2010 0800-2010 **0800-2010 0900-20**10 0800-2010 **08**00-2010 0800-2010 0800-2010 0800-

0988-

0300-

6982.

caeo-1

CHEMISTRY 1

(For Private Candidates Only)

Time: 3 Hours Thursday, 7th October 2010 p.m. O cara-1010 esca-2016

- Instructions This paper consists of sections A, B and C. 1.
- 5000 Answer all questions in sections A and B, and two (2) questions from section C. 70.00 A
- 3. Calculators and cellular phones are not allowed in the examination room.
- 4. 800-Write your Examination Number on every page of your answer booklet(s). 5. The following constants may be used.

Atomic masses: H = 1, C = 12, O = 16, N = 14, Mg = 24, Al = 26, S = 32, Cl. = 35.5, K = 39. Cu = 63.5, Ag. = 108. Cu = 1

Avogadro's Number = 6.02×10^{23} .

GMV at s.t.p. = 22.4 dm^3 .

1 Faraday = 96,500 coulombs.

Standard pressure = 760 mm Hg.

Standard temperature = 273 K.

1 litre = $1 \text{ dm}^3 = 1000 \text{ cm}^3$.

This paper consists of 7 printed pages.

SECTION A (20 Marks)

Answer all questions in this section.

- 1. For each of the items (i) (x) choose the correct answer among the alternatives provided, and write its letter beside the item number in the answer booklet(s).
 - (i) Isotopes of the same elements have
 - A different atomic number
 - B different atomic masses
 - C the same number of neutrons
 - D different number of electrons
 - E different number of protons.
 - (ii) A colourless gas is soluble in water. Its aqueous solution is acidic and gives white precipitate with aqueous silver nitrate acidified with dilute nitric acid. What is the name of the gas?
 - A Carbon dioxide
 - B Sulphur dioxide
 - C Hydrogen chloride
 - D Carbon monoxide
 - E Nitrogen dioxide.
 - (iii) Choose the set of elements that is arranged in order of increasing electronegativity.
 - A Chlorine, fluorine, nitrogen, oxygen, carbon
 - B Fluorine, chlorine, oxygen, nitrogen, carbon
 - C Carbon, nitrogen, oxygen, chlorine, fluorine
 - D Nitrogen, oxygen, carbon, fluorine, chlorine
 - E Oxygen, carbon, fluorine, chlorine, nitrogen.
 - (iv) The preparation of charcoal by local or modern methods is an example of
 - A destructive distillation
 - B a process of sublimation
 - C simple distillation
 - D fractional distillation
 - E a process of cracking.
 - (v) Example of a weak acid in the following list is
 - A dilute sulphuric acid
 - B dilute acetic acid
 - C dilute nitric acid
 - D dilute hydrochloric acid
 - E saturated nitric acid.
 - (vi) The chemical equation
 - $CH_4 + Cl \rightarrow CH_3Cl + HCl$ represents an example of
 - A substitution reaction
 - B addition reaction
 - C esterification
 - D polymerization
 - E oxidation reaction.

(VII) The	weight of oxygen in 90 g of water is		
	A	60 g		
	В	70 g		
	C	80 g		
	D	90 g		
	E	85 g.		
	y			
(vii	i) Con	sider the following reaction at equilibria	ım:	
		$COOH \rightleftharpoons CH_3COO^- + H^+$		
		rder to produce more acetic acid we nee	d to	
	A			
	В	increase the concentration of H ⁺ ions		
	C	decrease the concentration of H ⁺ ions		
	D	increase the initial concentration of CI	H-COOH	
	E	decrease the concentration of CH ₃ COO		
	Ľ	decrease the concentration of CH3CO	J Iolis.	
Gre	An or	comple of an allegan that decal armises no	ta aairum	
(1X)		cample of an alkene that decolourises po methane	nassium permanganate	Solution 18
	A			
	В	ethyne		
	C	ethene		
	D	ethane		
	E	butyne.	Hillian	
	A B	cular formula is C_2H_6 C_2H_4		
	C	CH ₄		
	D	C_4H_{12}		
	E	$C_3H_{8.}$		
	21	P		91 ft 1
	4.			A. S.
		X > \$1		4
			Z Caratter plants and pur	
				10. 2.1
		there is a second tribute.		
			A CONTRACTOR OF THE PARTY OF TH	
				2
		en rema		9

2. Match the items in **List A** with the responses in **List B** by writing the letter of the correct response beside the item number.

List A		List B
i) Milk souring	A	Two miscible liquids
ii) Air 🛭	В	Gaining hydrogen
iii) Decomposition reaction	- C	Suspension
iv) Precipitation reaction	D	Sublimation
v) Oxidation reaction	EN	Physical change
vi) Reversible reaction	F	Two liquids with very close boiling points
vii) Water and ethanol	G	$CaCO_{3(s)} \xrightarrow{heat} CaO_{(s)} + CO_{2(g)}$
(viii) Solid phase $\stackrel{heat}{\rightleftharpoons}$ vapo	mr H	$AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$
2	1	$CH_{4(s)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$
pha	se J	$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$
ix) Solution and filtration	K	Compound
(x) Water	_ L	Element
	M	Decantation
	N	Fractional distillation
	0	Soluble in water
	P	Mixture
×	Q 🖂	Chemical change
	R	Separating an insoluble substance from a
		soluble one
	S	Evaporation
	T	Incomplete combustion of hydrocarbon

SECTION B (60 Marks)

Answer all questions in this section.

3. (a) Define the following terms:

(i) Anode

(ii) Cathode

(2 marks)

(b) State Faradays second law of electrolysis.

(1 mark)

- (c) A steady current of 2.5A was passed for 15 minutes through two different types of solutions namely copper sulphate and silver nitrate.
 - (i) Calculate the masses of copper and silver liberated.
 - (ii) From the masses in (i) what were the number of moles of each substance liberated?
 - (iii) What is the ratio in moles of Cu and Ag liberated in whole numbers?

(7 marks)

Late given

4.	(a)	What do you understand by the following terms? (i) Proton			
		(i) Proton (ii) Neutron			
			(2 marks)		
		(iii) Electron.	(3 marks)		
	(b)	Sodium has a relative atomic mass of 23 and its atomic number is 11. Draw simple diagrams to show the particles which make up (i) sodium atom			
			(3 marks)		
	(c)	A and B represent atoms of two isotopes of silver, A is ¹⁰⁷ Ag and			
		B is $^{109}_{47}$ Ag. State the number of			
		(i) protons in atom A(ii) electrons in atom B			
		(iii) neutrons in atom A (iv) protons in atom B.	(4 marks)		
5.	(a)	 (i) What is meant by the term reduction? (ii) What is the oxidation number of FeSO₄? Justify your answer. 	C Sch bline 45 - 1		
		(iii) Name the compound mentioned in (ii) above.	(4 marks)		
	(b)	Write the symbols and the valences of the following radicals. (i) Nitrate			
		(ii) Hydrogen carbonate			
			(3 marks)		
	(c)	Write the names and chemical formulae of the two oxides of iron wh variable valences.	nere the metal atom has		
		variable varences.	(5 marks)		
6.	(a)	Name at least two (2) examples of each of the following:			
		(i) Mineral acid			
		(ii) Organic acid	(4 marks)		
	(b)	(i) Why do we use indicators in titrations?			
		(ii) Name two common indicators and give their colours in acidic			
		solution.	(4 marks)		
	(c)	(i) Which elements are contained in a table salt (common salt)?			
	(-)		(2 marks)		

The elements magnesium, aluminium, sulphur and argon are in the second period of the periodic 7. table. For the listed elements write electronic structure of each element. (4 marks) (b) formulae for the hydride of magnesium, aluminium and sulphur. (3 marks) formulae for the oxides of magnesium, aluminium and sulphur and classify them into acidic, (c) basic, amphoteric and neutral oxides. (3 marks) Define the following: 8. (a) Cracking (i) (ii) Combustion (2 marks) (b) What is a reason of heating coal in the absence of air before using it in homes or factories? Explain how solar panels can help to save energy in homes. (4 marks) State at least four (4) factors that determine the choice of a good fuel. (4 marks) SECTION C (20 Marks) Answer two (2) questions from this section. Bauxite is an important raw material. It is the hydrated oxide of a certain metal. The metal is extracted from the oxide by electrolysis. Which metal is extracted from bauxite? (a) (i) (ii)Why bauxite is dissolved in molten cryolite? (3 marks) (b) (i) Which types of electrodes are recommended for extraction of the metal from bauxite? Write equations for the reactions taking place at the electrodes. (ii) (4 marks) (c) Name the three alloys of the metal. (i) What are the three properties which have made the metal popular in cooking utensils? (3 marks)

Why preparation of metallic oxides by direct combination is not intensively used?

10.

(a)

(2 marks)

(b)	The following results were obtained in an experimagnesium oxide when magnesium burnt in the air. Mass of crucible = 12.5 g Mass of crucible + magnesium = 14.9 g Mass of crucible + magnesium oxide = 16.5 g.	ment to find the molecular formula of
e	 (i) What mass of magnesium was used in the experi (ii) How many moles of magnesium atoms were use (iii) What mass of oxygen combined with magnesium (iv) How many moles of oxygen combined with mag 	d in the experiment? n?
(c)	Use the answers from part (b) to write the equation of	the reaction. (2 marks)
(a)	 Complete the following reactions: (i) Cu_(s) + HCl_{(aq).} → (ii) PbCO_{3(s)} + HCl_(aq.) → 	(2 marks)
(b)	suitable indicator, describe how you would prepare rea (i) sodium sulphate	
	(ii) copper (II) sulphate.	(5 marks)
(c)	Give reason(s) for the use of nitrates in (i) fertilizer industry (ii) food preservative (iii) antiseptics and photography.	(3 marks)
(a)	Give reasons for the following: (i) Alkanes have lowest melting and boiling points organic compounds.	when compared to the other classes of
	(ii) Alkenes are more reactive than alkanes.	(2 marks)
(b)	(i) Why is it dangerous to burn hydrocarbons in too(ii) Why methane is used as fuel? Write a balanced of	
(c)	 (i) From which factors does the isomerism of alcohol (ii) Write and name all the isomers of the following a CH₃CH₂CH₂CH₂CH₂OH 	BACCE 1985 - 13 TOURISH 12 CONTACT BACCE 1
Jen .	moradous second Law of el	ectrolisis

11.

12.