THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/1

CHEMISTRY 1

(For Both School and Private Candidates)

TIME: 3 Hours

Thursday, 05th October 2015 p.m.

Instructions

- 1. This paper consists of sections A, B and C.
- 2. Answer **all** questions in this paper.
- 3. Calculators and cellular phones are **not** allowed in the examination room.
- 4. Write your **Examination Number** on every page of your answer booklet(s).
- 5. The following constants may be used:

Atomic masses:

H = 1, Li = 7, C = 12, O = 16, Na = 23, Al = 26, Cl = 35.5, K = 39, Cu = 63.5

Avogadro's number = 6.02×10^{23} .

GMV at s.t.p. = 22.4 dm^3 .

1 faraday = 96,500 coulombs.

Standard pressure = 760 mm Hg.

Standard temperature = 273 K.

1 litre = $1 \text{ dm}^3 = 1000 \text{ cm}^3$.

SECTION A (20 marks)

Answer all questions in this section.

- 1. For each of the items (i) (x), choose the correct answer among the given alternatives and write its letter beside the item number in the answer booklet provided.
 - (i) The mass number of a carbon atom that contains six protons, eight neutrons, and six electrons is

A 6

B 14

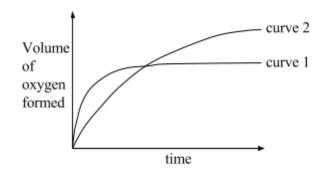
C 8

D 12

E 20.

(ii) How many moles of oxygen are required for the complete combustion of 2.2 g of C₃H₈ to form carbon dioxide and water?

A 0.050 moles


B 0.15 moles

C = 0.25 moles

D 0.50 moles

E 0.025 moles.

(iii) In the graph below, curve 1 was obtained from the decomposition of 100 cm³ of 1.0M hydrogen peroxide solution catalysed by manganese (IV) oxide, $2H_2O_2 \rightarrow 2H_2O + O_2$.

Which alteration/change to the original experimental conditions would produce curve 2?

- A Lowering the temperature
- B Using less manganese IV oxide
- C Increasing the temperature
- D Adding some $0.1 \text{ M H}_2\text{O}_2$
- E Using a different catalyst.
- (iv) How long must a current of 4.00 A be applied to a solution of $Cu_{(aq)}^{2+}$ to produce 2.0 grams of copper metal?

A $2.4 \times 10^4 \text{s}$

B $1.5 \times 10^3 s$

C $7.6 \times 10^2 s$

D $3.8 \times 10^2 s$

E $12 \times 10^4 \text{s}$.

(v) Which of the following hydrocarbons does NOT belong to the same homologous series as the others?

A CH₄

 $\begin{array}{ccc} B & C_3H_8 \\ \hline \end{array}$

 $C C_4H_{10}$

 $D \quad C_6H_{12}$

E C_2H_{12} .

- (vi) A solution of pH 1.6 is best described as
 - A weak acid \mathbf{C} weak base B strong base
 - E neutral solution. D strong acid
- (vii) Which among the following equations correctly shows the reaction between chlorine gas and water?

 - $\begin{array}{ll} A & Cl_{2(g)} + H_2O_{(l)} \longrightarrow Cl_{2(g)} \\ B & 2Cl_{2(g)} + 2H_2O_{(l)} \longrightarrow 4Cl \stackrel{-}{(aq)} + O_{2(g)} + 2H_{2(g)} \end{array}$
 - $C \quad Cl_{2(g)} + H_2O_{(1)} \longrightarrow HCl_{(aq)} + HOCL_{(aq)}$

 - D $2Cl_{2(g)}^{(a)} + 2H_{2}^{(a)}O_{(l)} \rightarrow 2HOCl_{2(aq)} + H_{2(aq)}^{(ad)}$ E $2Cl_{2(g)} + 3H_{2}O_{(l)} \rightarrow Cl_{2(g)} + 2H_{3}O^{+}$.
- (viii) Hygroscopic and deliquescent substances can be used as
 - A oxidising agents B drying agents C reducing agents
 - D weak electrolytes E catalyst.
- (ix) Which among the following pair of substances are allotropes?
 - A H₂O and H₂O₂ B ¹²C and ¹⁴C P₄ and P₈
 - D H₂ and 2H⁺ E H^+ and H_3O .
- (x) Water can be obtained from a solution of common salt by
 - A evaporation B simple distillation \mathbf{C} filtration
 - D condensation E fractional distillation.
- 2. Match the items in LIST A with the responses in LIST B by writing the letter of the correct response beside the item number.

	LIST A	LIST B
(i)	Its hydroxide is used in soil treatment.	A Barium
(ii)	It is obtained from its ore in the blast furnace.	B Lithium
(iii)	It gives a lilac colour when placed in a non-luminous flame.	C Iron
(iv)	It forms an insoluble sulphate.	D Potassium
(v)	It is in the same group in the periodic table with nitrogen.	E Oxygen
(vi)	It reacts with hydrogen to form a compound which is a liquid at room	F Fluorine
	temperature.	G Sulphur
(vii)	It is used in filament lamps.	H Argon
(viii)	It is the strongest oxidizing agent among the halogens.	I Phosphorus
(ix)	It exists in three main forms.	J Sodium
(x)	Its chloride is added to food in order to give taste.	K Magnesium
		L Carbon
		M Neon
		N Silicon
		O Calcium

SECTION B (54 marks)

Answer **all** questions in this section.

- 3. (a) (i) State two conditions required for iron to rust.
 - (ii) List two methods which are used to prevent rusting of iron.
 - (b) State three properties that make aluminium useful in overhead cables.
- 4. (a) Give three examples in each of the following:
 - (i) Solid fuel
 - (ii) Gaseous fuel.
 - (b) The reaction which produces methanol from carbon monoxide and hydrogen is represented by the equation $CO_{(g)} + 2H_{2(g)} \stackrel{?}{=} CH_3OH_{(g)} \Delta H = -94kJmol^{-1}$. The reaction is carried out at high pressure to give a good yield of methanol.
 - (i) Explain why increase in pressure gives a better yield of methanol.
 - (ii) The value of ΔH is negative. What does this tell about the reaction?
 - (iii) With a reason, state whether a high temperature or low temperature will give a better yield of methanol.
- 5. (a) (i) Explain, in terms of electronic configurations, why sodium and potassium elements have similar chemical properties.
 - (ii) State the trend in reactivity of group I elements in the Periodic Table and give reasons for it.
 - (b) Use the knowledge of periodic Table to complete Table 1.

Table 1

S/n	Name of element	Atomic number	Electronic configuration
(i)	Lithium		
(ii)		13	
(iii)			2.8.7

6. (a) Table 2 indicates the pH values of soil for some crops to grow.

Table 2

Crops	Soil pH	
Tomato	7.0	
Bean	6.0	
Cabbage	5.4	
Cauliflower	5.6	
Celery	6.3	
Lettuce	6.1	
Onions	5.7	
Swede	5.3	
Parsley	5.1	

Which crop grows best in the:

- (i) Most acidic soil?
- (ii) Least acidic soil?
- (iii) Neutral soil?
- (b) Suggest one best method for separating each of the following mixtures:
 - (i) Common salt and water
 - (ii) Iodine and sand.
 - (iii) Pieces of iron and sand.
- 7. (a) Briefly explain what will happen when
 - (i) concentrated sulphuric acid is exposed to the atmosphere?
 - (ii) iron (II) sulphate is exposed to air for a long time?
 - (iii) a bottle containing AgNO₃ is left open?
 - (b) Give three applications of the process of neutralization in daily life.
- 8. (a) Give the names or formula of the two chemicals that would be used in the laboratory to make each of the following gases. State a simple test that could be used to identify each gas.
 - (i) Oxygen.
 - (ii) Hydrogen.
 - (iii) Carbon dioxide.
 - (b) Suggest a suitable indicator for the following titrations:
 - (i) Hydrochloric acid against ammonia solution.
 - (ii) Sulphuric acid against sodium hydroxide solution.
 - (iii) Ethanoic acid against potassium hydroxide solution.
- 9. (a) (i) What type of a chemical bond is found between fluorine atoms in a fluorine molecule?
 - (ii) Name other type(s) of chemical bond formed by fluorine with other elements. Give an example of a compound in which fluorine form this type of bond.
 - (b) Compound X contains 24.24% carbon, 4.04% hydrogen and 71.72% chlorine. Given that, the vapour density of X is 49.5.
 - (i) Calculate the molecular formula of the compound X.
 - (ii) Draw and name the displayed/open structure formula of the possible isomer(s) from the molecular formula determined.
- 10. (a) A student tested four samples of water, each 5 cm³ from different areas of Kahama district by shaking with 3 drops of soap solution. The experiment was repeated by boiling each sample of water (5 cm³) with 3 drops of soap solution. The observations were recorded in Table 3.

Table 3

Sample	Observation with soap solution	Observation for boiled sample with soap solution
A	No later	Lather
В	Lather	Lather
С	Lather	Lather
D	No lather	No lather

- (i) Which samples contain hard water?
- (ii) Which sample contains temporary hard water? Give a reason.
- (b) Protons neutrons and electrons particles are located in the atoms; fill in the missing information in Table 4 about these particles.

Table 4

Particles	Relative mass	Relative charge	Location
Proton			
Electron	1 1840		
Neutron		0	In the nucleus

- 11. (a) A steady current of 2A was passed through a solution containing ions of a metal (X^{2+}) for nine minutes. The mass of metal X that was liberated were 0.3552 g. Calculate the molar mass of metal X.
 - (b) Name the following compounds according to the IUPAC system.

(i)
$$C_5H_{12}$$
.

(ii)
$$CH_3$$
 $CH_3CH_2 - C - CH_2OH$. CH_3

(iii)
$$CH_3$$
 CH_3 CH_2OOH .

SECTION C (26 marks)

Answer all questions from this section.

- 12. Describe the extraction of iron from the haematite ore and write all the chemical equations for the reactions involved in each stage of extraction.
- 13. Addition of inorganic fertilizers in the farm is not as important as addition of organic manure. Discuss the correctness of this statement in four points.